Annual Drinking Water Quality Report Borough of Florham Park Water Utility

For the Year 2024, Results from the Year 2023

We are pleased to present to you this year's Annual Drinking Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources.

We are committed to ensuring the quality of your water. Our water source is wells. Our four wells draw groundwater from a sand and gravel buried aquifer system. The New Jersey Department of Environmental Protection (NJDEP) has completed and issued the Source Water Assessment Report and Summaries for all public water systems, information is available at www.state.nj.us/dep/swap or by contacting NJDEP's Bureau of Safe Drinking Water at (609) 292-5550 or watersupply@dep.nj.gov. You may also contact your public water system to obtain information regarding your water system's Source Water Assessment. This water system's source water susceptibility rating and a list of potential contaminant sources is included.

The Borough of Florham Park Water Utility routinely monitors for contaminants in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1st to December 31st, 2023. The state allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than a year old.

TEST RESULTS – TABLE OF DETECTED CONTAMINANTS

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Contaminant	Viola- tion Y/N	Level Detected	Units of Measure- ment	MC LG	MCL	Likely Source of Contamination			
Radioactive Contaminants									
Gross Alpha Test results Yr. 2023	N	Range = $ND - 3$ Highest detect = 3	pCi/1	0	15	Erosion of natural deposits			
Combined Radium 228 & 226 Test results Yr. 2023	N	Range = 1.5 Highest detect = 1.5	pCi/1	0	5	Erosion of natural deposits			
Inorganic Contaminants:									
Arsenic Test results Yr. 2021	N	Range = $1.8 - 2.7$ Highest detect = 2.7	ppb	N/A	5	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes			
Barium Test results Yr. 2021	N	Range = 0.04 Highest detect = 0.04	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits			
Chromium Test results Yr. 2021	N	Range = $0.5 - 0.8$ Highest detect = 0.8	ppb	100	100	Discharge from steel and pulp mills; erosion of natural deposits			
Copper Test results Yr. 2021 Result at 90 th Percentile	N	0.33 No samples exceeded the action level	ppm	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits			
Lead Test results Yr. 2021 Result at 90 th Percentile	N	3.2 No samples exceeded the action level	ppb	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits			
Nickel Test results Yr. 2021	N	Range = ND Highest detect = ND	ppb	N/A	N/A	Erosion of natural deposits			
Nitrate (as Nitrogen) Test results Yr. 2023	N	Range = 0.8-1.3 Highest detect = 1.3	ppm	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits			
Volatile Organic Contaminant	ts / Disinfec								
TTHM Total Trihalomethanes Test results Yr. 2023	N	Range = 4.4–18.5 Highest detect = 28.9	ug/L ug/L	N/A	80	By-product of drinking water disinfection			
HAA5 Test results Yr. 2023	N	Range = 2.2-5.1 Highest detect =5.1	ug/L ug/L	N/A	60	By-product of drinking water disinfection			
Regulated Disinfectants		Level Detected		MRDL		MRDLG			
Chlorine Test results Yr. 2023		Range = $0.6 - 0.7$ ppm Average = 0.6 ppm		4.0 ppm		4.0 ppm Chlorine is a water additive used to control microbes			

Contaminant	Level Detected	Units of Measurement	Likely source
(PFOS)	Range = <2-2.8	ppt	Used in the manufacture of
Perfluorooctane Sulfonate	Highest Avg. = 2.2		fluoropolymers.
(PFOA)	Range = $8 - 11.7$	ppt	Used in the manufacture of
Perfluorooctanoic Acid	Highest Avg. = 10.4		fluoropolymers.

What are PFOA and PFOS?

Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are per- and polyfluoroalkyl substances (PFAS), previously referred to as perfluorinated compounds, or PFCs, that are man-made and used in industrial and commercial applications. PFOA was used as a processing aid in the manufacture of fluoropolymers used in non-stick cookware and other products, as well as other commercial and industrial uses based on its resistance to harsh chemicals and high temperatures. PFOS is used in metal plating and finishing as well as in various commercial products. PFOS was previously used as a major ingredient in aqueous film forming foams for firefighting and training, and PFOA and PFOS are found in consumer products such as stain resistant coatings for upholstery and carpets, water resistant outdoor clothing, and grease proof food packaging. Although the use of PFOA and PFOS has decreased substantially, contamination is expected to continue indefinitely because these substances are extremely persistent in the environment and are soluble and mobile in water.

Lead: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Borough of Florham Park Water Utility is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 second to 2 minutes before using water for drinking and cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water hotline or at http://www.epa.gov/safewater/lead. Call us at 973-410-5471 to find out how to get your water tested for lead. Testing is essential because you cannot see, taste, or smell lead in drinking water.

However, for those served by a lead service line, flushing times may vary based on the length of the service line and plumbing configuration in your home. If your home is set back further from the street, a longer flushing time may be needed. To conserve water, other household water usage activities such as showering, washing clothes, and running the dishwasher are effective methods of flushing out water from a service line. To determine if you have a lead service line, contact us at 973-377-1330.

Lead Service Line Inventory Information

The Borough of Florham Park actively seeks to ensure that lead and copper are not found in our public community water system in detectable levels. As part of an effort to comply with the regulations and requirements of the Federal Lead and Copper Rule and P.L.2021, Ch. 183, the Borough of Florham Park has compiled this inventory of service line information. The inventory will be regularly updated as the Borough continues to investigate the composition of service lines throughout the Borough. Service lines in the Borough have two parts: the portion owned by the Borough of Florham Park from the main to the curb box, and the customer owned portion from the curb box to the water meter. Inventory in table format:

https://docs.google.com/spreadsheets/d/1VkdiSqt2zF9Pt2ugcCD3u5OvSdt_wBPmXjoQYqxhn30/edit?usp=sharing Map Format: https://fpboro.maps.arcgis.com/apps/webappviewer/index.html?id=63dcf9c8849f490cb532e22b9905cccb

The Water Department is continuously working to refine its inventory, including establishing a process for verifying the service line material for the service lines where our records indicate the material is "unknown." In addition, a service line replacement program plan will be developed and submitted to the NJDEP. This plan will provide for the annual replacement of at least 10% of all known lead service lines in the Borough and include the cost and funding mechanisms for the replacement effort.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas projection, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial
 processes and petroleum production, and can come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

DEFINITIONS

In the "Test Results" table you may find some terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

<u>Picocuries per liter</u> (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

<u>Action Level</u> - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

<u>Maximum Contaminant Level</u> - The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

<u>Maximum Contaminant Level Goal</u> -: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

<u>Secondary Contaminant-</u> Substances that do not have an impact on health. Secondary Contaminants affect aesthetic qualities such as odor, taste or appearance. Secondary standards are recommendations, not mandates.

Recommended Upper Limit (RUL) – Recommended maximum concentration of secondary contaminants. These reflect aesthetic qualities such as odor, taste or appearance. RUL's are recommendations, not mandates.

<u>Maximum Residual Disinfectant Level (MRDL):</u> The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

<u>Maximum Residual Disinfectant Level Goal (MRDLG):</u> The level of a drinking water disinfectant, below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.

We at the Borough of Florham Park Water Utility work hard to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life, and our children's future. Please call our office if you have questions.

Important Information about your Drinking Water: Florham Park Water Utility- PWSID # NJ1411001

Availability of Monitoring Data for Unregulated Contaminants for Florham Park Water Utility

Our water system has sampled for a series of unregulated contaminants. Unregulated contaminants are those that don't yet have a drinking water standard set by EPA. The purpose of monitoring for these contaminants is to help EPA decide whether the contaminants should have a standard. As our customers, you have a right to know that these data are available. If you are interested in examining the results, please contact Alex Zipeto at (973) 410-5471 or Florham Park Water Utility, 111 Ridgedale Avenue, Florham Park, NJ 07932.

What is being done? We're continuing to monitor according to UCMR5 regulations.

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.

Florham Park Water Utility- PWSID # NJ1411001

Florham Park Water Utility is a public community water system consisting of 4 wells.

This system's source water comes from the following aquifer: Glacial Sand and Gravel Buried Aquifer System

This system can purchase water from the following water systems: New Jersey American Water Company, East Hanover Water Department, and Madison Water Department.

Susceptibility Ratings for Florham Park Water Utility Sources

The table below illustrates the susceptibility ratings for the seven contaminant categories (and radon) for each source in the system. The table provides the number of wells and intakes that rated high (H), medium (M), or low (L) for each contaminant category. For susceptibility ratings of purchased water, refer to the specific water system's source water assessment report.

The seven contaminant categories are defined at the bottom of this page. DEP considered all surface water highly susceptible to pathogens, therefore all intakes received a high rating for the pathogen category. For the purpose of Source Water Assessment Program, radionuclides are more of a concern for ground water than surface water. As a result, surface water intakes' susceptibility to radionuclides was not determined and they all received a low rating.

If a system is rated highly susceptible for a contaminant category, it does not mean a customer is or will be consuming contaminated drinking water. The rating reflects the <u>potential</u> for contamination of source water, not the existence of contamination. Public water systems are required to monitor for regulated contaminants and to install treatment if any contaminants are detected at frequencies and concentrations above allowable levels. As a result of the assessments, DEP may customize (change existing) monitoring schedules based on the susceptibility ratings.

	Pa	ithoge	ens	Nutrients			Pesticides			Volatile Organic Compounds			Inorganics		Radionuclides			Radon			Disinfection Byproduct Precursors			
Sources	Н	M	L	Н	M	L	Н	M	L	Н	M	L	Н	M	L	Н	M	L	Н	M	L	Н	M	L
Wells – 4		4		4					4	4				4			4		4			4		

Pathogens: Disease-causing organisms such as bacteria and viruses. Common sources are animal and human fecal wastes.

Nutrients: Compounds, minerals and elements that aid growth, that are both naturally occurring and man-made. Examples include nitrogen and phosphorus.

Volatile Organic Compounds: Man-made chemicals used as solvents, degreasers, and gasoline components. Examples include benzene, methyl tertiary butyl ether (MTBE), and vinyl chloride.

Pesticides: Man-made chemicals used to control pests, weeds and fungus. Common sources include land application and manufacturing centers of pesticides. Examples include herbicides such as atrazine, and insecticides such as chlordane.

Inorganics: Mineral-based compounds that are both naturally occurring and man-made. Examples include arsenic, asbestos, copper, lead, and nitrate.

Radionuclides: Radioactive substances that are both naturally occurring and man-made. Examples include radium and uranium.

Radon: Colorless, odorless, cancer-causing gas that occurs naturally in the environment. For more information, go to http://www.nj.gov/dep/rpp/radon/index.htm or call (800) 648-0394.

Disinfection Byproduct Precursors: A common source is naturally occurring organic matter in surface water. Disinfection byproducts are formed when the disinfectants (usually chlorine) used to kill pathogens react with dissolved organic material (for example leaves) present in surface water.

Monitoring Waivers

The Safe Drinking Water Act regulations allow monitoring waivers to reduce or eliminate the monitoring requirements for asbestos, volatile organic chemicals, and synthetic organic chemicals. The Florham Park Water Utility has received a monitoring waiver for asbestos in 2023 and has received waivers for synthetic organic chemicals in prior monitoring periods.

Landlord Responsibilities

Landlords must distribute this information to every tenant as soon as practicable, but no later than three business days after receipt. Delivery must be done by hand, mail, or email, and by posting the information in a prominent location at the entrance of each rental premises, pursuant to section 3 of P.L. 2021, c. 82 (C.58:12A-12.4 et seq.)

How to Contact Us

If you have any questions about this report or concerning your water utility, please call 973-410-5471. We want our residents to be informed about their water utility. Other questions regarding the water system can be directed to the Mayor and Council at meetings that are held the third Thursday of the month at Borough Hall, 111 Ridgedale Avenue, Florham Park, NJ 07932. For more information and scheduled meetings, visit the Borough website at www.florhamparknj.gov.